The Mean Curvature Flow for Isoparametric Submanifolds
نویسنده
چکیده
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite time to a smooth submanifold of lower dimension. We also give a precise description of the collapsing.
منابع مشابه
RICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملThe Mean Curvature Flow Smoothes Lipschitz Submanifolds
The mean curvature flow is the gradient flow of volume functionals on the space of submanifolds. We prove a fundamental regularity result of mean curvature flow in this paper: a Lipschitz submanifold with small local Lipschitz norm becomes smooth instantly along the mean curvature flow. This generalizes the regularity theorem of Ecker and Huisken for Lipschitz hypersurfaces. In particular, any ...
متن کاملMean Curvature Flow of Pinched Submanifolds to Spheres
The evolution of hypersurfaces by their mean curvature has been studied by many authors since the appearance of Gerhard Huisken’s seminal paper [Hu1]. More recently, mean curvature flow of higher codimension submanifolds has also received attention. In this paper we prove a result analogous to that of [Hu1] for submanifolds of any codimension. Let F0 : Σn → Rn+k be a smooth immersion of a compa...
متن کاملMean Curvature Flow of Higher Codimension in Hyperbolic Spaces
where H(x, t) is the mean curvature vector of Ft(M) and Ft(x) = F (x, t). We call F : M × [0, T ) → F(c) the mean curvature flow with initial value F . The mean curvature flow was proposed by Mullins [17] to describe the formation of grain boundaries in annealing metals. In [3], Brakke introduced the motion of a submanifold by its mean curvature in arbitrary codimension and constructed a genera...
متن کامل